

Big Data for Labour Market Intelligence

Day 1 System presentation and Outcomes

Alessandro Vaccarino - Mauro Pelucchi

June 2021

Topics

- 1. Goal & context
- 2. Challenges
 - 1. Stakeholders
 - 2. The functional architecture
 - 3. Data ingestion techniques
 - 4. Data processing pipeline
 - 5. Classification techniques

Topics

1. Goal & context

- 2. Challenges
 - 1. Stakeholders
 - 2. The functional architecture
 - 3. Data ingestion techniques
 - 4. Data processing pipeline
 - 5. Classification techniques

Context

Continuously evolving Labour Market:

- Digitalization of professions
- Relevance of Soft skills
- Internationalisation
- New professions and skills emerging
- Smart and Remote working
- Impact of Covid-19 pandemic
- •

We need *something* that can help us monitor and analyze **how** LM is evolving, to support Decision Makers taking **the right decisions at the right time**

What we have / what we need

We already have official statistics, that are:

- Representative
- Strong in terms of value

But we can benefit of **additional**, **complementary information** that could be:

- Fast, to track what's happening now (e.g. Covid-19 Impact analysis)
- Granular and adherent to real and current market terms, to capture emerging trends analyzing what companies are actually looking for

How to find a similar, complementary source of information?

Using Web Labour Market

Why Web Labour Market

It's the exact representation of what companies are looking in a given period:

- Up to date: companies publish an announcement when they actually need to hire
- Detailed: an announcement describes as well as possibile the specific need, in terms of:
 - Profession needed
 - Requirements (skills, experience, educational level,...)
 - Working context (place, contract, sector, working hours,...)
- Adherent to reality: market terms are used, both for occupation and skills. This helps identify emerging terminology adopted by Market

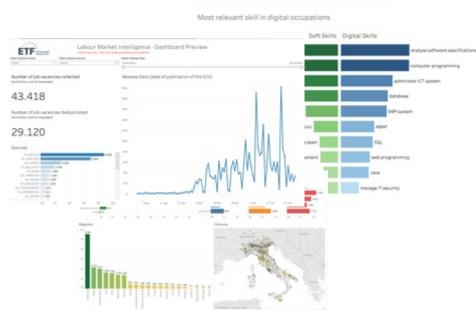
It would be great to use those information in addition to better and deeper understand how Labour Market is evolving in a given country, even compared to other countries

Our Goal

Transform Online Job Advertisments...



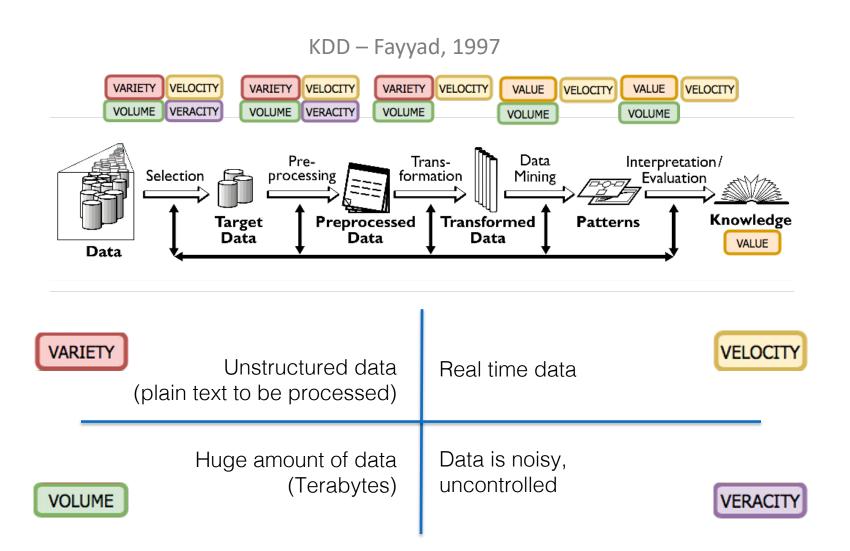
...in insights and analytics



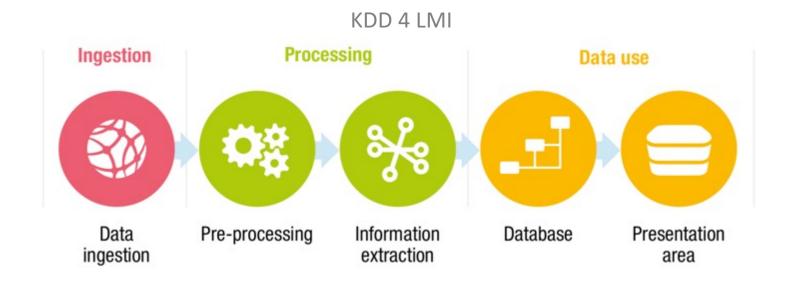
Challenges

- Handle a huge amount of near real time data
- Data coming from web → Need to detect and reduce noise
- Multi language environment
- Need to relate to classification standards
- Find a way to summarize and present a wide and complex scenario

Methodological background



Our Approach



Some Outcomes

- Skillspanorama Skills in Online Vacancies
 - https://skillspanorama.cedefop.europa.eu/en/in dicators/skills-online-vacancies
- Skills OVATE
 - https://www.cedefop.europa.eu/en/datavisualisations/skills-online-vacancies
- ETF Big Data 4 LMI
 - Tunisia
 - Ukraine

Topics

- 1. Goal & context
- 2. Challenges
 - 1. Stakeholders
 - 2. The functional architecture
 - 3. Data ingestion techniques
 - 4. Data processing pipeline
 - 5. Classification techniques

Stakeholders

Project Leader

Key Users

Domain Experts

End Users

Project leader

ETF

- Lead the project with the steering committee
- Define the scope of the project
- Define key organizations
- Maintain relations with EU stakeholders
- Provide advice

Key Users

- ETF, Burning Glass
 - Define requirements
 - Monitor quality of the project
 - Provide input to the development of the project
 - Manage the landscaping
 - Validate overall data flow and methodology

Domain Experts

- International Country Experts
 - Provide the knowledge and expertise
 - Execute the landscaping
 - Understand the language/terms of their context
 - Evaluate the accuracy of the results
 - Test the product
 - Provide feedback

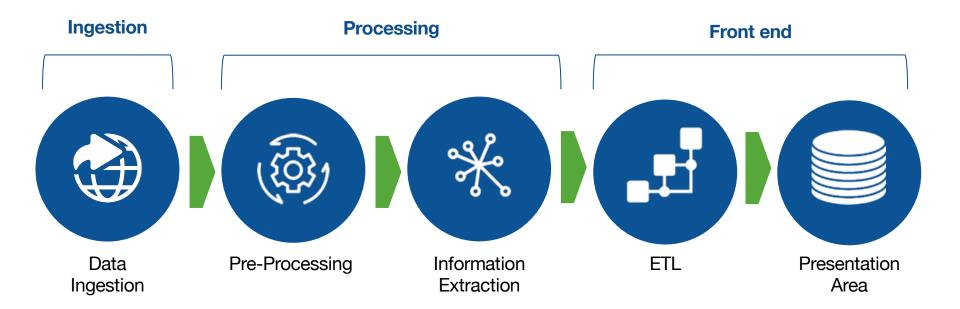
End Users

- Decision Makers and Business Users
 - (Visual) Explore dataset, analysis and aggregate data
 - Define new analysis processes
 - Produce Data storytelling
 - Make decisions by exploring data
- Data Scientists
 - Apply new machine learning models and AI techniques
 - Extract new insights from the data
 - Apply advanced data modelling to the dataset
- Data Analysts
 - Interprets data and turns it into information
 - Identifying patterns and trends
 - Extract and analyze aggregate data
 - Publish and share their analysis

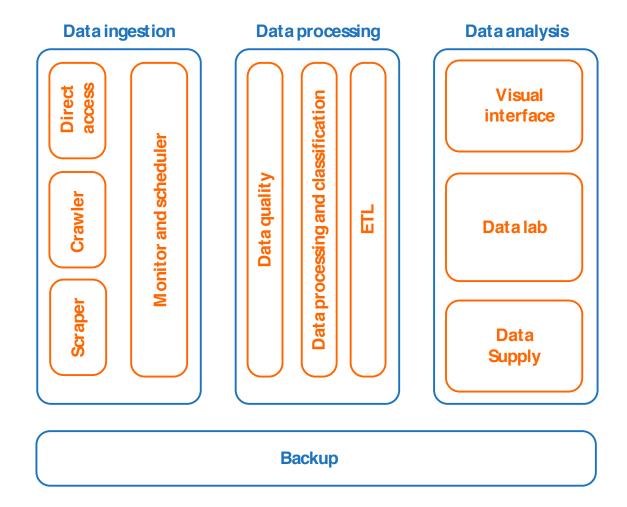
Topics

- 1. Goal & context
- 2. Challenges
 - 1. Stakeholders
 - 2. The functional architecture
 - 3. Data ingestion techniques
 - 4. Data processing pipeline
 - 5. Classification techniques

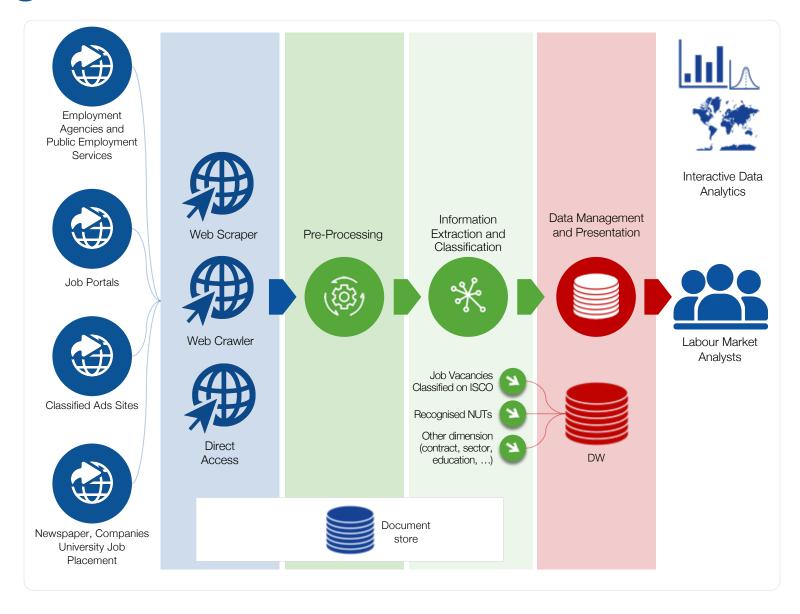
Overall Data Flow



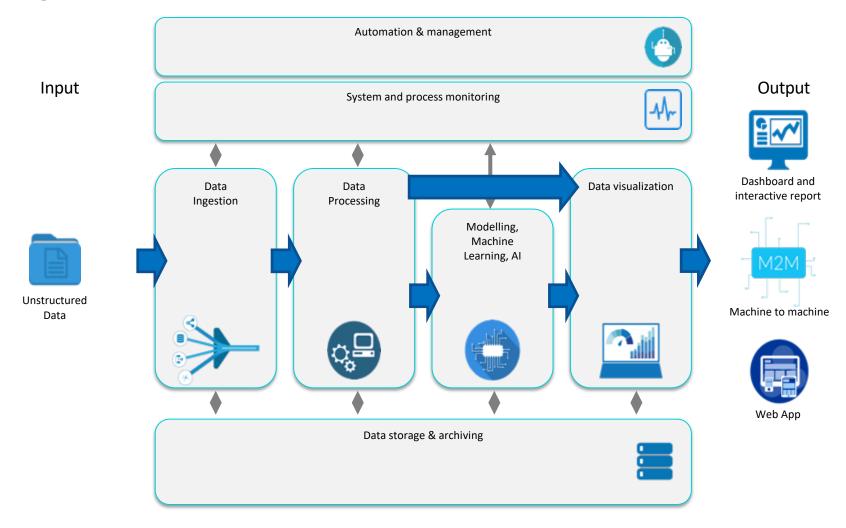
Conceptual architecture



Logical view

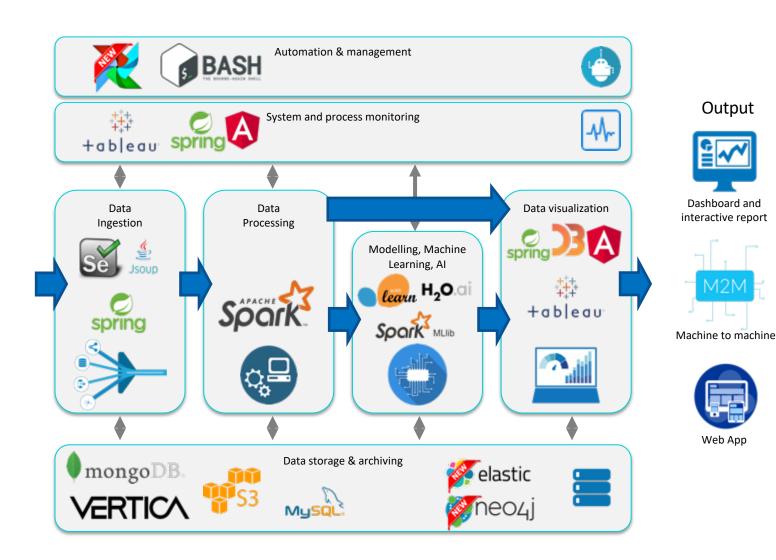


Physical view



Technology view

Input



Key design projects

- Micro-services
- Componentization
 - Component specialization
 - Small applications
 - Portability
 - Reuse
 - Maintenance
- Scale Out
 - Performance

Key components

- Data ingestion: collect raw data from OJV in both structured and unstructured (raw text) formats
- Data processing: classify data through machine learning techniques
- Data analysis: extract information from data and make it available through visualization
- Backup: store data in a safe environment to allow warm and cold restore

Infrastructure Challenges

- Manage multiple parallel ingestion activities
- Availability of high performance computational infrastructure at a glance
- High memory requirements
- High storage volumes to store source and staging data
- Big data environment
- Scalable architecture

01010101001010101010101010 Micro-services
01010101010101010101010 design

Components by definition

Infrastructure challenges

Context

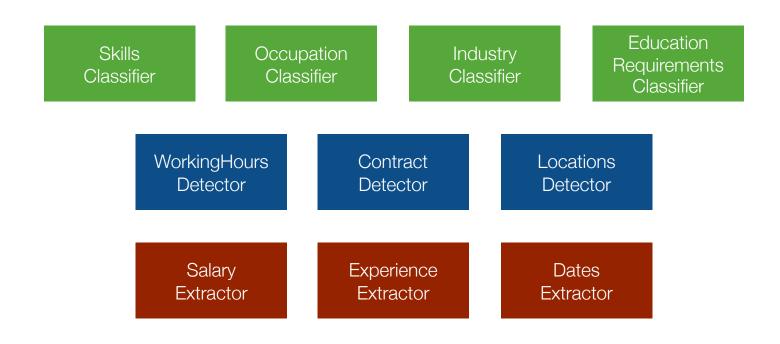
Monitoring

Scalability

Pre-Processing Microservices

Language Spam No-Vacancy Stemmer Detector Filter Filter Deduplication N-gram Text Cleaner Merge Vacancy component component TF-IDF StopWords Document2Vec Tokenizer Transformer Removers

Classification Microservices



Technology requirements

- 1. Services on request
- 2. Network access
- Resource pooling
 - Governance
- 4. Quick elasticity
- Measurement of services
 - Data Quality
 - 2. Performance
- 6. Portability (on-premises and different cloud services)
- 7. Polyglot
 - 1. Computer programming languages
 - 2. Technologies

Organic view

Data Flow Applications & Components (Software as a Service) Big Data Environment (Platform as a Service) Computation resources Storage & DBMS (Infrastructure as a service) (Data as a Service) Software Kernel Pool of shared elastic hardware resources (Hardware as a Service)

Recap & Keywords

- Key components and data flow
 - Ingestion, Processing, Classification, Presentation
- Componetization and micro-services
- Eterogeneous and big data stack
 - Selenium, Hadoop, Spark, Sklearn, Spark
- Scalable Environment
 - Cloud

Questions?

Topics

- 1. Goal & context
- 2. Challenges
 - 1. Stakeholders
 - 2. The functional architecture
 - 3. Data ingestion techniques
 - 4. Data processing pipeline
 - 5. Classification techniques

Landscaping

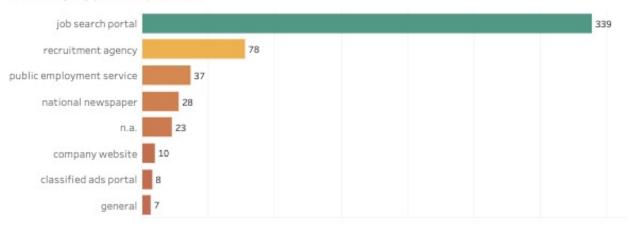
A Landscaping activity is performed to produce a list of sources (web portals) that are relevant for the Web Labour Market in a given country.

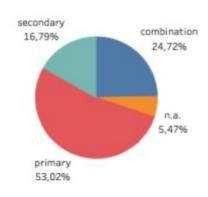
A Country Expert **validates** this list, that will become the initial step of the LMI System

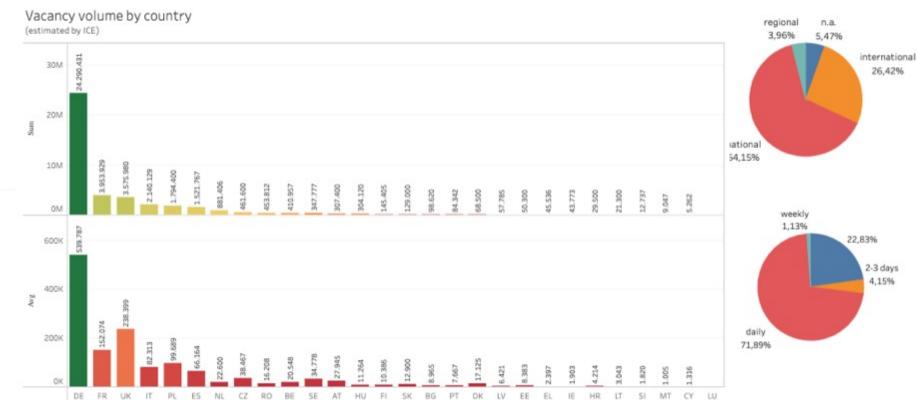
Source selection strategy

4 Processing Steps

Sites by type of operator







Augmentation

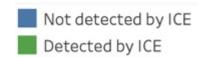
We analysed the results of the landscaping activity

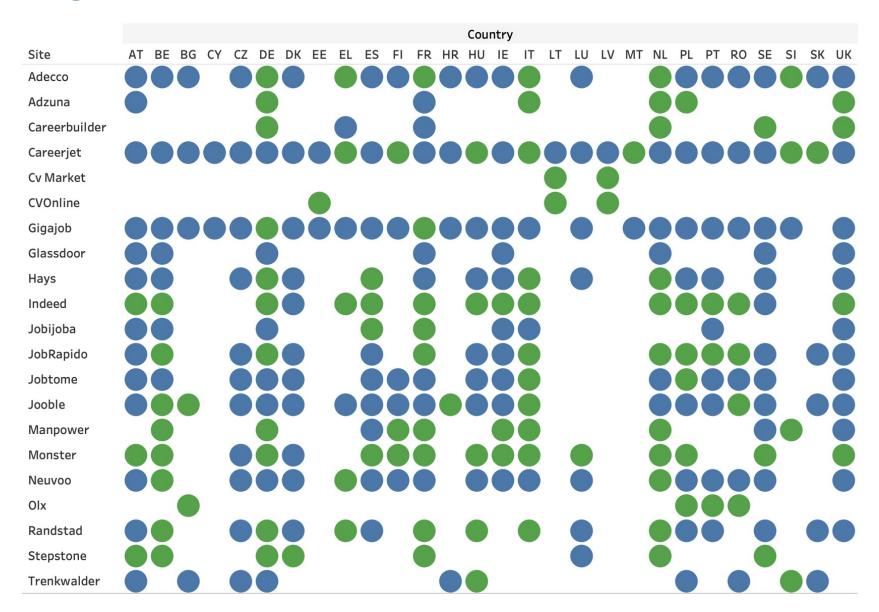
- Completing the mapping of transnational sources
- Adding further transnational sources
- Adding the complete set of EURES sources

In order to define

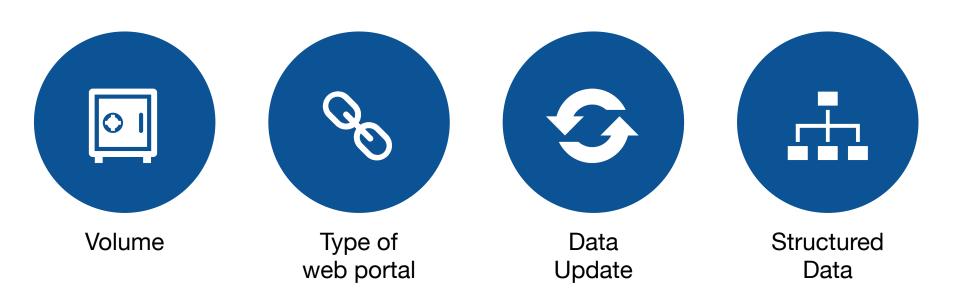
- a priority list to define agreements
- a relevance order to realize data ingestion channels

Augmentation



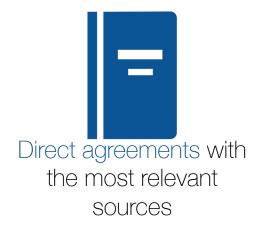


Relevance and ranking of sources



Data Ingestion phase

The process of obtaining and importing data from web portals and storing them in a Database



Robustness of the process

Quality of data collected

Scalability and Governance

1. Robustness

Issue: potential technical problems when gathering data from a source (unavailability, block, changes in data structure)

Risk: loss of data

Solution: redundancy

- Have the most important sites (by volume and/or coverage) ingested from two or more sources
- Avoid loss of data in case of troubles with a source
- Collect data from both primary and secondary sources

2. Quality

Issue: need to obtain data as clean as possible, detecting structured data when available

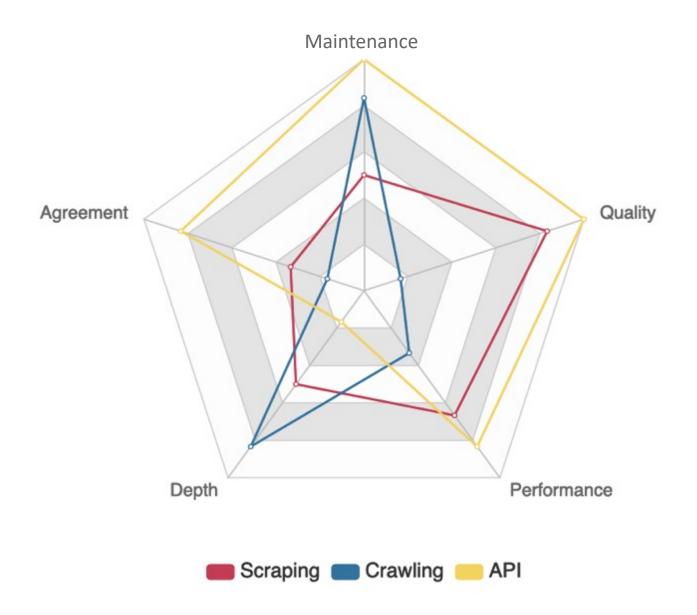
Risk: loss of quality

Solution: tailored ingestion. We collect data using a specific approach based on the single source:

- o API
- Scraping
- Crawling

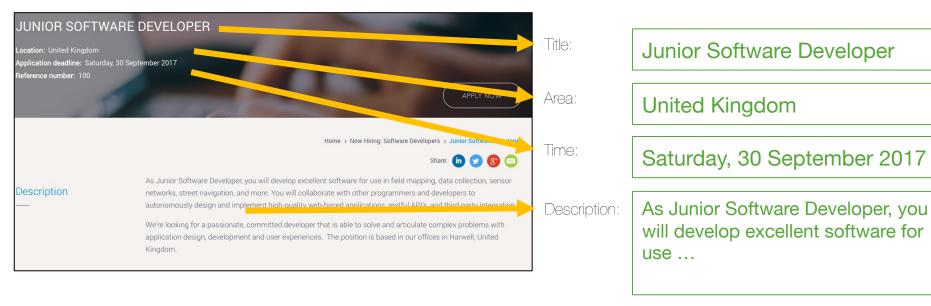
Ingestion Challenges - Quality

- API: when available (agreements), we collect mostly structured data from Web Portals.
 - Pros: Very high quality (most of fields structured)
 - Cons: Need agreement, not always available
- Scraping: if API is not feasible and the structure of the web poral is consistent, we develop a custom scraper that extract structured/unstructured data from pages
 - Pros: High Quality (many structured fields)
 - Cons: Web portal specific development
- Crawling: if web portal page structure is not consistent, we ingest data using a multi-purpose crawling approach
 - Pros: Lower quality (no structured fields)
 - Cons: Fast and Versatile approach



Scraping – An example

Web scraping is data scraping used for extracting structured data from websites



Crawling - An example

A Web crawler is a bot that systematically browses web portals for the purpose of download all their pages.

Crawling is the most common way to get information massively from the Internet: search engine spiders (e.g. GoogleBot)

Web page:

3. Scalability and Governance

Issue: need to handle a real and complex Big Data environment, simultaneously connecting to thousands of websites

Risk: Loss of Process control and loss of OJVs due to slowness of the process

Solution:

- A scalable infrastructure
- A monitoring and governance custom tool

Ingestion Challenges - Scaling

We developed a solution based on microservices, that creates and deletes "virtual browsing computers" as needed. Each computer has multiple browsers that can emulate human web navigation.

Main differences with a real computer are:

- 1. They don't have a monitor, but saves pages on our Data Lake
- 2. We can scale up and down as needed

Recap & Keywords

- Landscaping, source selections and augmentation
- Tailored approach
 - API, Scraping, Crawling components
- Focus on quantity
 - Scaling and real-time collecting
- Real-time monitoring of the collected data

Questions?

Topics

- 1. Goal & context
- 2. Challenges
 - 1. Stakeholders
 - 2. The functional architecture
 - 3. Data ingestion techniques
 - 4. Data processing pipeline
 - 5. Classification techniques

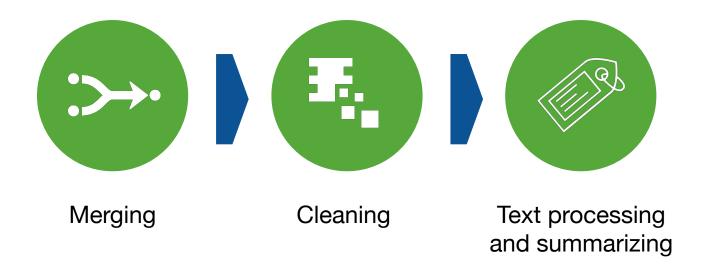
Data Pre-Processing – Challenges & Definitions

- Goal:
 - Feed information extraction phase with proper data
- Challenges:
 - Measure, monitor and increase Data Quality, to maximize completeness, consistency, complexity, timeliness and periodicity
- Approach:
 - Develop a multi-phase pipeline, focused on:
 - Vacancy Detection: analyze website page to select only content referred to vacancies
 - Deduplication: detect duplicated vacancy posts to obtain a single vacancy entity
 - Date detection: identify release and expire dates through vacancy description analysis
 - Vacancy duration: method to define expire date, when not explicitly available
- Features:
 - Guarantee Data Quality during all processing phases

Data Pre-Processing – Challenges & Definitions

The process of cleaning ingested data and dedupicating OJVs, to guarantee that analytical phase'll work on data at the highest quality possible

Pre-Processing steps



Data Pre-Processing The language detection

O Why:

- Each language has different keywords, stopwords,...
- It can reflect different cultures and Labour Market scenarios...
- ... So it's fundamental to classify the language of the OJV, so use the most proper classification pipeline

o How:

- We trained for each language (60+) a specific classifier based on Wikipedia corpus
- Obtained models are very accurate (~99% of precision) and fast to adopt in the pipeline

What we obtain:

- A fast and strong classification of the language used in each OJV
- A way to archive OJVs for which we don't have a classification pipeline

Data Pre-Processing How to deal with noise?

- In a Big Data environment, we must deal with noise
 - Why? Because information in gathered from the web, one of the most noisy place ever known
- First of all, we've to master which type of noise we have to face with...:
 - Web pages explicitly not related to OJVs:
 - Social network pages
 - News pages
 - Privacy policy pages
 - ...
 - Web pages disguised as OJVs:
 - Training courses
 - CVs
 - Consulting services
 - ...

- ...Then, we have to detect and handle duplicated OJVs:
 - Generally, a vacancy is posted on multiple portals
 - If we deal with them as distinct, we would overestimate Labour Demand
 - So, we've to detect duplicated OJVs and merge information coming from them in a single one

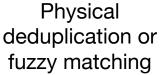
Data Pre-Processing Noise Detection – How?

O 2 Steps approach:

- Machine Learning approach
 - For each language, we trained a Naïve Bayes classifier with more than 20k web pages:
 - » 10k of real OJVs related pages
 - » 10k of web pages not related to OJVs
 - Accuracy of ~99%
 - Fast to train and use
 - An approach similar to a "Email Spam Detection" system
- Fuzzy matching approach
 - Used to detect "OVJs like" webpages, but related to training offers, consulting services,....
 - It works looking ad page header and body to detect keywords (language dependent) that can help us label it like a "not-related to OJVs" page

But, before starting OJVs deduplication phase, we need to clean text to simplify and consolidate it...

Data Pre-Processing Deduplication phase



Made on the description (or content) part of the job vacancy.

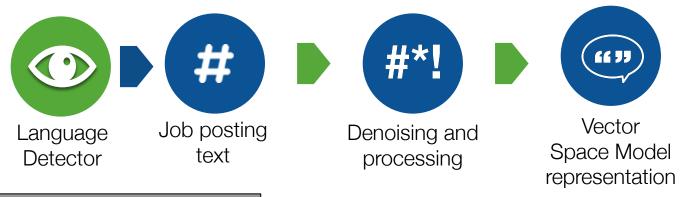
Metadata matching

Using metadata coming from job portals to remove job vacancies duplicates on the aggregators websites (e.g. reference id, page url)

Job ads

Text processing and summarizing

The text processing and summarizing phase aims at reducing the text to improve the process of classifications of job vacancies according to the European standards.



JUNIOR SOFTWARE DEVELOPER Location: United Kingdom Application deadline: Saturday, 30 September 2017 Reference number: 100 As Junior Software Developer, you will develop excellent software for use in field mapping, data collection, sensor networks, street navigation, and more. You will collaborate with other programmers and developers to autonomously design and implement high-quality web-based applications, restful APPs, and third party integration. We're looking for a passionate, committed developer that is able to solve and articulate complex problems with

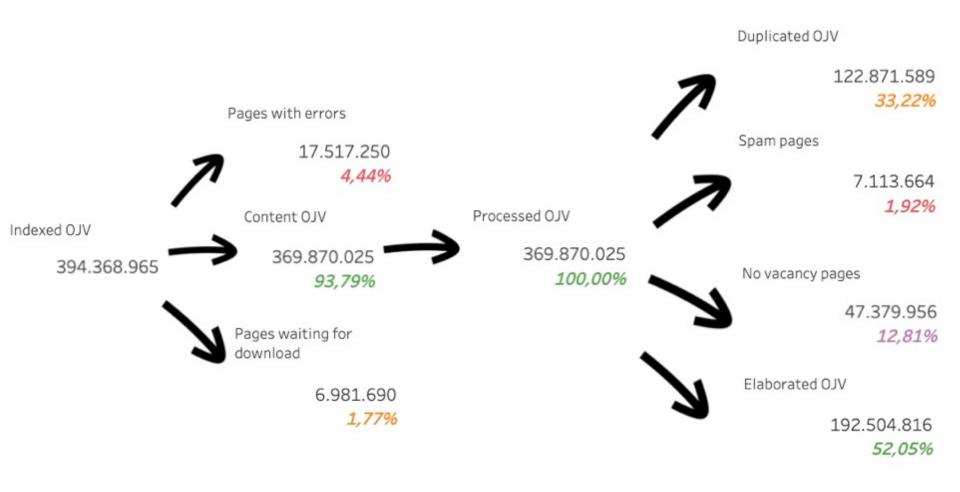
application design, development and user experiences. The position is based in our offices in Hanvell United

As Junior (Software Developer), you will develop excellent (software) for use in (field mapping), (data collection), (sensor networks), (street navigation), and more. You will (collaborate) with other (programmers) and (developers) to (autonomously) design and implement high-quality (web-based applications), restful (API)'s, and third party (integration).

We're looking for a passionate, committed (developer) that is able to (solve) and articulate (complex problems) with (application design), (development) and (user experiences).

The position is based in our offices in (Harwell), (United Kingdom).

Data Pre-Processing – Results The noise

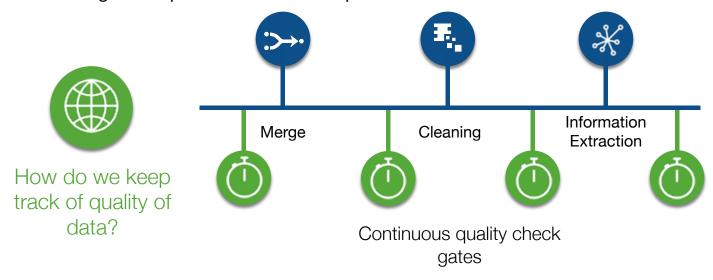


Data Pre-Processing What to do with noise?

We don't physically delete noise

We collect it to keep track of the overall process, and monitor:

- Noise type → To identify need to develop some deeper quality check process
- Noise trends → To detect sources that are increasing/decreasing noise and deal it
- Analytical purposes → Analyse country-specific cultural environments, like the use of OJVs portal to promote training courses
- Monitoring → Keep track of the overall process



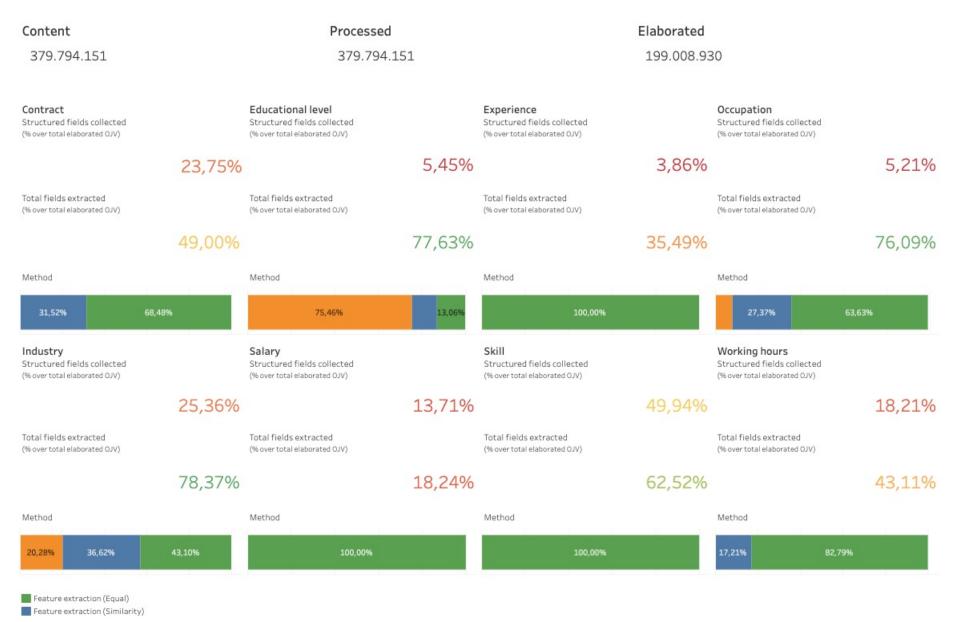
Recap & Keywords

- Focus on quality
 - How remove noise?
 - Deduplication activities
- Languages challenge
 - Tailored component for each language
- Track of quality of data
 - Continous quality check and gates

Questions?

Topics

- 1. Goal & context
- 2. Challenges
 - 1. Stakeholders
 - 2. The functional architecture
 - 3. Data ingestion techniques
 - 4. Data processing pipeline
 - 5. Classification techniques



Data Classification

Goal:

Extract and structure information from data, to be provided to the presentation layer

Challenges:

Handle massive amount of heterogeneous data written in different languages

Approach:

- Develop an adaptable framework, language dependent, tailored on different information features. Some relevant challenges:
 - Occupation feature classification: combined methods such as Machine Learning, Topic Modeling and Unsupervised Learning
 - **Skill** feature classification: another different combined methods, such as Text Analysis with corpus based or Knowledge based similarity

Features:

 Guarantee Explainable information extraction, logging classification methods and relevant features.

Data Classification - An example

Job vacancy

Occupation Skills

Time Area

Industry ...

Junior Software Developer

As Junior Software Developer, you will develop excellent software for use in field mapping, data collection, sensor networks, street navigation, and more. You will collaborate with other programmers and developers to autonomously design and implement high-quality webbased applications, restful API's, and third party integration.

We're looking for a passionate, committed developer that is able to solve and articulate complex problems with application design, development and user experiences. The position is based in our offices in Harwell, United Kingdom.

Skills: develop software, implement web based applications, problem solving, develop user experiences

Information
Extraction

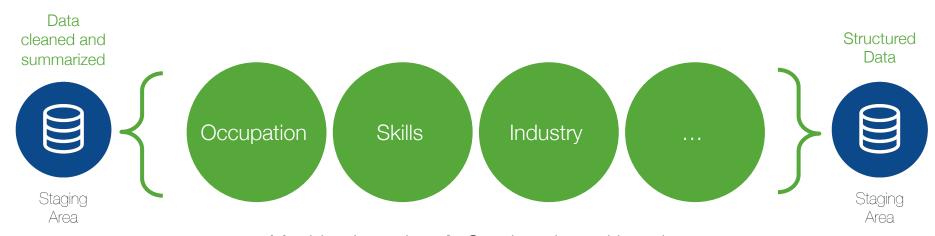
Harwell, UK

. . . .

Information Extraction and Classification Real Time Labour Market Intelligence

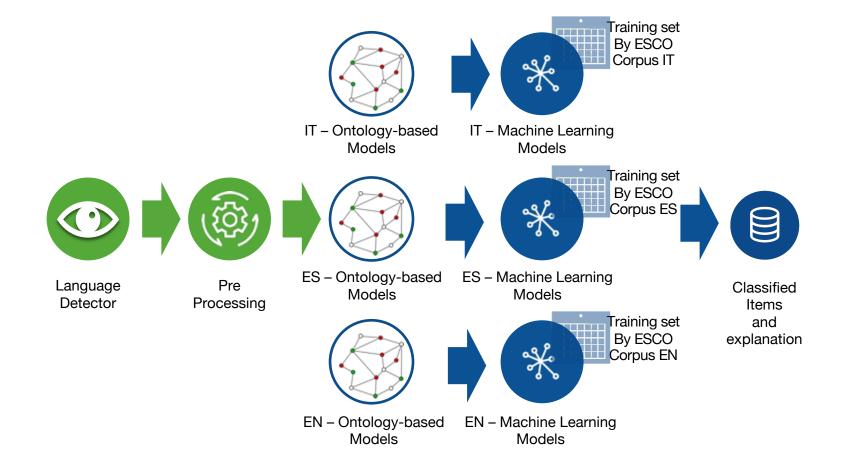
Information Extraction is an area of natural language processing that deals with finding factual information in free text.

This task uses machine learning techniques (ontology based learning, supervised learning and unsupervised learning) to match job ads with standard classifications.



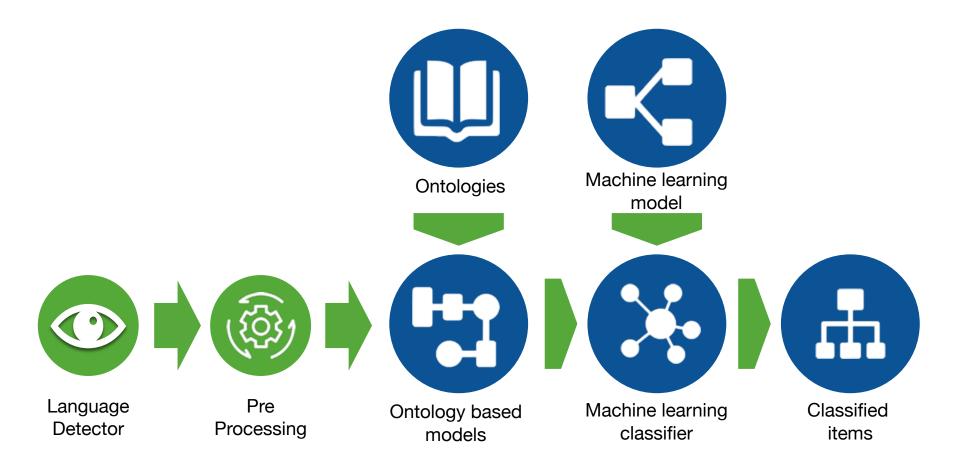
Machine Learning → Ontology based learning, supervised learning and unsupervised learning, etc.

Classification



What does "Ontology-based Models" means? How we can use ontologies to classify?

Occupations pipeline



Considerations on Occupation Classifier

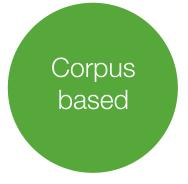
- Ontology based learning + Supervised learning
 - Esco Ontology
 - New labels from Topic modelling
- One model for each language
- Data labelled by expert from each country
 - ~100k job ads (cleaned train set using our ontology)
 - 436 possible targets
- Evaluating set 20% of gold dataset job ads
 - Weighted Precision ~86%
 - ~430 detected professions

Text Similarity Approaches

String based

String similarity measures operate on string sequences and character composition.

Jaro-Winkler, Jaccard, Cosine similarity



Corpus-Based similarity is a semantic similarity measure that determines the similarity between words according to information gained from large corpora.

Latent Semantic Analysis, Explicit Semantic Analysis, DIStributionally similar words using CO-occurrences

Knowledge-Based
Similarity is based on
identifying the degree of
similarity between
words using information
derived from semantic
networks

Precision of occupation (overall)

Validation Set (overall)

Validation Set by language

bg	ca	cs	da	de	el	en	es	et	eu	fi	fr	gl	hr	hu	it	lt	lv	nl	pl	pt	ro	sk	sl	sv
•	•		•	•	•		•	•		11.972 3			•	•	•	•	•	•	•	•	•			•
5.050	14.210	31.290	6.022	17.420	7.173	35.019	21.680	8.414	196	11.972 3	39.146	811	4.637	13.813	17.228	7.447	4.443	8.687	10.554	14.678	10.226	3.089	4.576	20.083

Precision of occupation by language

		-		-		-	-	-		-		-			
4000					400			400							
100000		10000			1000		1000	1000		1000		10000		1000	

85,96% 86,45% 88,96% 96,89% 83,17% 85,02% 82,83% 87,39% 83,63% 68,59% 98,80% 83,89% 83,07% 89,45% 97,40% 81,30% 92,86% 96,95% 93,31% 80,02% 83,01% 95,12% 98,50% 87,78% 78,43%

89,65%

Precision of occupation (lv1)

Clerical support workers	•	85,77%
Craft and related trades	•	86,10%
Elementary occupations		86,19%
Managers		86,32%
Plant and machine operat		86,29%
Professionals		86,61%
Service and sales workers	•	89,38%
Skilled agricultural, fores	•	88,79%
Technicians and associate		85,54%

Precision of occupation (Iv2)

Precision of occupa	ition (Iv2)
Administrative and comm		85,06%
Agricultural, forestry and		80,82%
Assemblers		84,87%
Building and related trad	•	92,30%
Business and administrati		85,66%
Business and administrati		80,06%
Chief executives, senior o	•	91,36%
Cleaners and helpers		85,11%
Customer services clerks		82,21%
Drivers and mobile plant		86,49%
Electrical and electronic t		74,60%
Food preparation assista		89,08%
Food processing, wood w		82,61%
General and keyboard cler	•	97,20%
	_	

Handicraft and printing w..

Precision of occupation (Iv3)

Administration professio		86,21%
Administrative and specia	•	84,92%
Agricultural, forestry and		80,82%
Animal producers		83,13%
Architects, planners, surv		87,56%
Artistic, cultural and culin	•	91,74%
Assemblers		84,87%
Authors, journalists and li		90,72%
Blacksmiths, toolmakers		86,70%
Building and housekeepin		90,33%
Building finishers and rel	•	95,47%
Building frame and relate	•	90,00%
Business services agents	•	89,57%
Business services and ad		79,10%
Car, van and motorcycle d	•	90,40%

Precision of occupation (Iv4)

Accountants	83,60%
Accounting and bookkeepi	9 58,14%
Accounting associate prof	85,65%
Actors	93,41%
Administrative and execu	84,32%
Advertising and marketin	65,30%
Advertising and public rel	9 71,63%
Aged care services manag	9 78,81%
Agricultural and forestry	94,55%
Agricultural and industria	9 76,49%
Agricultural technicians	81,32%
Air conditioning and refri	85,95%
Air traffic controllers	84,43%
Air traffic safety electroni	95,52%
Aircraft engine mechanics	9 79,61%

Recap & Keywords

- Focus on summarization
 - How summarize data and improve our data analysts results?
- Link to standard taxonomies
 - Compare OJVs data with other sources
- Gold-set challenges (cardinality, quality and diversity)
- Mixed approaches
 - Machine learning
 - Ontology based learning
 - Text similarity and Information extraction techniques
- Model Life-Cycle

Questions?

