Big Data for Labour Market Intelligence

Day 1
System presentation and Outcomes

Alessandro Vaccarino – Mauro Pelucchi

June 2021
Topics

1. Goal & context
2. Challenges
 1. Stakeholders
 2. The functional architecture
 3. Data ingestion techniques
 4. Data processing pipeline
 5. Classification techniques
Topics

1. Goal & context
2. Challenges
 1. Stakeholders
 2. The functional architecture
 3. Data ingestion techniques
 4. Data processing pipeline
 5. Classification techniques
Continuously evolving Labour Market:

- Digitalization of professions
- Relevance of Soft skills
- Internationalisation
- New professions and skills emerging
- Smart and Remote working
- Impact of Covid-19 pandemic
- …

We need something that can help us monitor and analyze how LM is evolving, to support Decision Makers taking the right decisions at the right time
What we have / what we need

We already have **official statistics**, that are:

- *Representative*
- *Strong* in terms of value

But we can benefit of **additional, complementary information** that could be:

- *Fast*, to track what’s happening now (e.g. Covid-19 Impact analysis)
- *Granular* and *adherent* to real and current market terms, to capture emerging trends analyzing what companies are actually looking for

How to find a similar, complementary source of information? Using **Web Labour Market**
Why Web Labour Market

It’s the exact representation of what companies are looking in a given period:

• Up to date: companies publish an announcement when they actually need to hire
• Detailed: an announcement describes as well as possible the specific need, in terms of:
 o Profession needed
 o Requirements (skills, experience, educational level,…)
 o Working context (place, contract, sector, working hours,…)
• Adherent to reality: market terms are used, both for occupation and skills. This helps identify emerging terminology adopted by Market

It would be great to use those information in addition to better and deeper understand how Labour Market is evolving in a given country, even compared to other countries.
Our Goal

Transform Online Job Advertisements... ...in insights and analytics
Challenges

• Handle a huge amount of near real time data
• Data coming from web → Need to detect and reduce noise
• Multi language environment
• Need to relate to classification standards
• Find a way to summarize and present a wide and complex scenario
Methodological background

KDD – Fayyad, 1997

Unstructured data
(plain text to be processed)

Real time data

Huge amount of data
(Terabytes)

Data is noisy, uncontrolled

VARIETY

VELOCITY

VALUE

VERACITY

VOLUME
Our Approach
Some Outcomes

- **Skillspanorama – Skills in Online Vacancies**

- **Skills OVATE**

- **ETF – Big Data 4 LMI**
 - [Tunisia](https://www.cedefop.europa.eu/en/data-visualisations/skills-online-vacancies)
 - [Ukraine](https://www.cedefop.europa.eu/en/data-visualisations/skills-online-vacancies)
Topics

1. Goal & context
2. Challenges
 1. Stakeholders
 2. The functional architecture
 3. Data ingestion techniques
 4. Data processing pipeline
 5. Classification techniques
Stakeholders

- Project Leader
- Key Users
- Domain Experts
- End Users
Project leader

- ETF
 - Lead the project with the steering committee
 - Define the scope of the project
 - Define key organizations
 - Maintain relations with EU stakeholders
 - Provide advice
Key Users

- ETF, Burning Glass
 - Define requirements
 - Monitor quality of the project
 - Provide input to the development of the project
 - Manage the landscaping
 - Validate overall data flow and methodology
Domain Experts

- International Country Experts
 - Provide the knowledge and expertise
 - Execute the landscaping
 - Understand the language/terms of their context
 - Evaluate the accuracy of the results
 - Test the product
 - Provide feedback
End Users

• Decision Makers and Business Users
 o (Visual) Explore dataset, analysis and aggregate data
 o Define new analysis processes
 o Produce Data storytelling
 o Make decisions by exploring data

• Data Scientists
 o Apply new machine learning models and AI techniques
 o Extract new insights from the data
 o Apply advanced data modelling to the dataset

• Data Analysts
 o Interprets data and turns it into information
 o Identifying patterns and trends
 o Extract and analyze aggregate data
 o Publish and share their analysis
Topics

1. Goal & context
2. Challenges
 1. Stakeholders
 2. The functional architecture
 3. Data ingestion techniques
 4. Data processing pipeline
 5. Classification techniques
Overall Data Flow

Ingestion

Data Ingestion

Pre-Processing

Information Extraction

ETL

Presentation Area
Conceptual architecture

Data ingestion
- Direct access
- Crawler
- Scraper
- Monitor and scheduler

Data processing
- Data quality
- Data processing and classification
- ETL

Data analysis
- Visual interface
- Data lab
- Data Supply

Backup
Logical view

Employment Agencies and Public Employment Services

Web Scrapper

Web Crawler

Direct Access

Pre-Processing

Information Extraction and Classification

Data Management and Presentation

Interactive Data Analytics

Labour Market Analysts

Document store

Logical view

Employment Agencies and Public Employment Services

Web Scrapper

Web Crawler

Direct Access

Pre-Processing

Information Extraction and Classification

Data Management and Presentation

Interactive Data Analytics

Labour Market Analysts

Document store
Physical view

Input

Data Ingestion

Data Processing

System and process monitoring

Automation & management

Data visualization

Modelling, Machine Learning, AI

Data storage & archiving

Output

Dashboard and interactive report

Machine to machine

Web App

Unstructured Data
Technology view

- Data Ingestion
- Data Processing
- Modelling, Machine Learning, AI
- Data visualization
- Automation & management
- System and process monitoring
- Data storage & archiving
- Unstructured Data
- Input
- Output
- Dashboard and interactive report
- Machine to machine
- Web App

Technology view diagram with tools and processes.
Key design projects

- Micro-services
- Componentization
 - Component specialization
 - Small applications
 - Portability
 - Reuse
 - Maintenance
- Scale Out
 - Performance
Key components

- **Data ingestion:** collect raw data from OJV in both structured and unstructured (raw text) formats
- **Data processing:** classify data through machine learning techniques
- **Data analysis:** extract information from data and make it available through visualization
- **Backup:** store data in a safe environment to allow warm and cold restore
Infrastructure Challenges

- Manage multiple parallel ingestion activities
- Availability of high performance computational infrastructure at a glance
- High memory requirements
- High storage volumes to store source and staging data
- Big data environment
- Scalable architecture
Context

Manutability

Monitoring

Scalability

Updates

Onboarding
Pre-Processing Microservices

- Language Detector
- Spam Filter
- No-Vacancy Filter
- Stemmer
- Deduplication component
- N-gram component
- Text Cleaner
- Merge Vacancy
- TF-IDF Transformer
- Document2Vec
- Tokenizer
- StopWords Removers
Classification Microservices

- Skills Classifier
- Occupation Classifier
- Industry Classifier
- Education Requirements Classifier
- WorkingHours Detector
- Contract Detector
- Locations Detector
- Salary Extractor
- Experience Extractor
- Dates Extractor
Technology requirements

1. Services on request
2. Network access
3. Resource pooling
 1. Governance
4. Quick elasticity
5. Measurement of services
 1. Data Quality
 2. Performance
6. Portability (on-premises and different cloud services)
7. Polyglot
 1. Computer programming languages
 2. Technologies
Organic view

Data Flow Applications & Components
(Software as a Service)

Big Data Environment
(Platform as a Service)

Computation resources
(Infrastructure as a service)

Storage & DBMS
(Data as a Service)

Software Kernel

Pool of shared elastic hardware resources
(Hardware as a Service)
Recap & Keywords

- Key components and data flow
 - Ingestion, Processing, Classification, Presentation
- Componentization and micro-services
- Eterogeneous and big data stack
 - Selenium, Hadoop, Spark, Sklearn, Spark
- Scalable Environment
 - Cloud
Questions?
Topics

1. Goal & context
2. Challenges
 1. Stakeholders
 2. The functional architecture
 3. Data ingestion techniques
 4. Data processing pipeline
 5. Classification techniques
Landscaping

A Landscaping activity is performed to produce a list of sources (web portals) that are relevant for the Web Labour Market in a given country.

A Country Expert validates this list, that will become the initial step of the LMI System.
Source selection strategy

4 Processing Steps

Source selection in landscaping → Augmentation → Agreements → Coverage
Augmentation

We analysed the results of the landscaping activity
 • Completing the mapping of transnational sources
 • Adding further transnational sources
 • Adding the complete set of EURES sources

In order to define
 • a priority list to define agreements
 • a relevance order to realize data ingestion channels
Augmentation

Site	AT	BE	BG	CY	CZ	DE	DK	EE	EL	ES	FI	FR	HR	HU	IE	IT	LT	LU	LV	MT	NL	PL	PT	RO	SE	SI	SK	UK		
Adecco																														
Adzuna																														
Careerbuilder																														
Careerjet																														
Cv Market																														
CVOnline																														
Gigajob																														
Glassdoor																														
Hays																														
Indeed																														
Jobijoba																														
JobRapido																														
Jobtome																														
Jooble																														
Manpower																														
Monster																														
Neuvoo																														
Olx																														
Randstad																														
Stepstone																														
Trenkwalder																														
Relevance and ranking of sources

Volume
Type of web portal
Data Update
Structured Data
Data Ingestion phase

The process of obtaining and importing data from web portals and storing them in a Database

Focus on volumes

Coverage augmentation & maximization

Direct agreements with the most relevant sources
Ingestion Challenges

- Robustness of the process
- Quality of data collected
- Scalability and Governance
Ingestion Challenges

1. Robustness

Issue: potential technical problems when gathering data from a source (unavailability, block, changes in data structure)

Risk: loss of data

Solution: redundancy

- Have the most important sites (by volume and/or coverage) ingested from two or more sources
- Avoid loss of data in case of troubles with a source
- Collect data from both primary and secondary sources
Ingestion Challenges

2. Quality

Issue: need to obtain data as clean as possible, detecting structured data when available

Risk: loss of quality

Solution: tailored ingestion. We collect data using a specific approach based on the single source:

- API
- Scraping
- Crawling
Ingestion Challenges - Quality

- **API**: when available (agreements), we collect mostly structured data from Web Portals.
 - **Pros**: Very high quality (most of fields structured)
 - **Cons**: Need agreement, not always available

- **Scraping**: if API is not feasible and the structure of the web portal is consistent, we develop a custom scraper that extract structured/unstructured data from pages
 - **Pros**: High Quality (many structured fields)
 - **Cons**: Web portal specific development

- **Crawling**: if web portal page structure is not consistent, we ingest data using a multi-purpose crawling approach
 - **Pros**: Lower quality (no structured fields)
 - **Cons**: Fast and Versatile approach
Scraping – An example

Web scraping is data scraping used for extracting structured data from websites.

As Junior Software Developer, you will develop excellent software for use in field mapping, data collection, sensor networks, street navigation, and more. You will collaborate with other programmers and developers to autonomously design and implement high-quality web-based applications, RESTful APIs, and third-party integrations.

We're looking for a passionate, committed developer that is able to solve and articulate complex problems with application design, development and user experiences. The position is based in our offices in Harwell, United Kingdom.
Crawling – An example

A Web crawler is a bot that systematically browses web portals for the purpose of download all their pages.

Crawling is the most common way to get information massively from the Internet: search engine spiders (e.g. GoogleBot)

Web page:

<!DOCTYPE html>
<head>
 <meta name="title" content="Junior Software Developer" />
</head>
<body>
<header>
 <h2>Junior Software Developer</h2>
 <div><div>Location</div>United Kingdom</div>
</header>
<div><div>Description</div>
 As Junior Software Developer, you will develop excellent software for use in field mapping, data collection, sensor networks, street navigation, and more. You will collaborate with other programmers and developers to autonomously design and implement high-quality web-based applications, restful APIs, and third party integration.

 We’re looking for a passionate, committed developer that is able to solve and articulate complex problems with application design, development and user experiences. The position is based in our offices in Harwell, United Kingdom.

 ...
</div>
</body>
Ingestion Challenges

3. Scalability and Governance

Issue: need to handle a real and complex Big Data environment, simultaneously connecting to thousands of websites

Risk: Loss of Process control and loss of OJVs due to slowness of the process

Solution:
- A scalable infrastructure
- A monitoring and governance custom tool
Ingestion Challenges - Scaling

We developed a solution based on microservices, that creates and deletes “virtual browsing computers” as needed. Each computer has multiple browsers that can emulate human web navigation.

Main differences with a real computer are:

1. They don’t have a monitor, but saves pages on our Data Lake
2. We can scale up and down as needed
Recap & Keywords

- Landscaping, source selections and augmentation
- Tailored approach
 - API, Scraping, Crawling components
- Focus on quantity
 - Scaling and real-time collecting
- Real-time monitoring of the collected data
Questions?
Topics

1. Goal & context
2. Challenges
 1. Stakeholders
 2. The functional architecture
 3. Data ingestion techniques
 4. Data processing pipeline
 5. Classification techniques
Data Pre-Processing – Challenges & Definitions

- **Goal:**
 - Feed information extraction phase with proper data

- **Challenges:**
 - Measure, monitor and increase Data Quality, to maximize completeness, consistency, complexity, timeliness and periodicity

- **Approach:**
 - Develop a multi-phase pipeline, focused on:
 - Vacancy Detection: analyze website page to select only content referred to vacancies
 - Deduplication: detect duplicated vacancy posts to obtain a single vacancy entity
 - Date detection: identify release and expire dates through vacancy description analysis
 - Vacancy duration: method to define expire date, when not explicitly available

- **Features:**
 - Guarantee Data Quality during all processing phases
Data Pre-Processing – Challenges & Definitions

The process of cleaning ingested data and deduplicating OJVs, to guarantee that analytical phase’ll work on data at the highest quality possible.

- Language detection
- Noise reduction
- OJVs Deduplication
Pre-Processing steps

Merging → Cleaning → Text processing and summarizing
Data Pre-Processing
The language detection

○ Why:
 • Each language has different keywords, stopwords,…
 • It can reflect different cultures and Labour Market scenarios,…
 • … So it’s fundamental to classify the language of the OJV, so use the most proper classification pipeline

○ How:
 • We trained for each language (60+) a specific classifier based on Wikipedia corpus
 • Obtained models are very accurate (~99% of precision) and fast to adopt in the pipeline

○ What we obtain:
 • A fast and strong classification of the language used in each OJV
 • A way to archive OJVs for which we don’t have a classification pipeline
In a Big Data environment, we must deal with noise

- Why? Because information is gathered from the web, one of the most noisy places ever known.

First of all, we’ve to master which type of noise we have to face with…:

- Web pages explicitly not related to OJVs:
 - Social network pages
 - News pages
 - Privacy policy pages
 - ...

- Web pages disguised as OJVs:
 - Training courses
 - CVs
 - Consulting services
 - ...

Then, we have to detect and handle duplicated OJVs:

- Generally, a vacancy is posted on multiple portals.
- If we deal with them as distinct, we would overestimate Labour Demand.
- So, we’ve to detect duplicated OJVs and merge information coming from them in a single one.
Data Pre-Processing
Noise Detection – How?

2 Steps approach:

• Machine Learning approach
 – For each language, we trained a Naïve Bayes classifier with more than 20k web pages:
 » 10k of real OJVs related pages
 » 10k of web pages not related to OJVs
 – Accuracy of ~99%
 – Fast to train and use
 – An approach similar to a “Email Spam Detection” system

• Fuzzy matching approach
 – Used to detect “OVJs like” webpages, but related to training offers, consulting services,….
 – It works looking ad page header and body to detect keywords (language dependent) that can help us label it like a “not-related to OJVs” page

But, before starting OJVs deduplication phase, we need to clean text to simplify and consolidate it…
Data Pre-Processing
Deduplication phase

Physical deduplication or fuzzy matching
Made on the description (or content) part of the job vacancy.

Metadata matching
Using metadata coming from job portals to remove job vacancies duplicates on the aggregators websites (e.g. reference id, page url)

Job ads
Text processing and summarizing

The text processing and summarizing phase aims at reducing the text to improve the process of classifications of job vacancies according to the European standards.

As Junior (Software Developer), you will develop excellent (software) for use in (field mapping), (data collection), (sensor networks), (street navigation), and more. You will (collaborate) with other (programmers) and (developers) to (autonomously) design and implement high-quality (web-based applications), restful (API)'s, and third party (integration).

We're looking for a passionate, committed developer that is able to solve and articulate complex problems with (application design), (development) and (user experiences).

The position is based in our offices in (Harwell), (United Kingdom).
Data Pre-Processing – Results

The noise

Indexed OJV: 394,368,965

Content OJV: 369,870,025 (93.79%)

Pages with errors: 17,517,250 (4.44%)

Pages waiting for download: 6,981,690 (1.77%)

Processed OJV: 369,870,025 (100.00%)

Duplicated OJV: 122,871,589 (33.22%)

Spam pages: 7,113,664 (1.92%)

No vacancy pages: 47,379,956 (12.81%)

Elaborated OJV: 192,504,816 (52.05%)
Data Pre-Processing

What to do with noise?

We don’t physically delete noise

We collect it to keep track of the overall process, and monitor:

- Noise type ➔ To identify need to develop some deeper quality check process
- Noise trends ➔ To detect sources that are increasing/decreasing noise and deal it
- Analytical purposes ➔ Analyse country-specific cultural environments, like the use of OJVs portal to promote training courses
- Monitoring ➔ Keep track of the overall process

How do we keep track of quality of data?

Continuous quality check gates
Recap & Keywords

- Focus on quality
 - How remove noise?
 - Deduplication activities
- Languages challenge
 - Tailored component for each language
- Track of quality of data
 - Continuous quality check and gates
Questions?
Topics

1. Goal & context
2. Challenges
 1. Stakeholders
 2. The functional architecture
 3. Data ingestion techniques
 4. Data processing pipeline
 5. Classification techniques
Data Classification

• **Goal:**
 • Extract and structure information from data, to be provided to the presentation layer

• **Challenges:**
 • Handle massive amount of heterogeneous data written in different languages

• **Approach:**
 • Develop an adaptable framework, language dependent, tailored on different information features. Some relevant challenges:
 • **Occupation** feature classification: combined methods such as Machine Learning, Topic Modeling and Unsupervised Learning
 • **Skill** feature classification: another different combined methods, such as Text Analysis with corpus based or Knowledge based similarity

• **Features:**
 • Guarantee Explainable information extraction, logging classification methods and relevant features.
As Junior Software Developer, you will develop excellent software for use in field mapping, data collection, sensor networks, street navigation, and more. You will collaborate with other programmers and developers to autonomously design and implement high-quality web-based applications, restful API's, and third party integration.

We’re looking for a passionate, committed developer that is able to solve and articulate complex problems with application design, development and user experiences. The position is based in our offices in Harwell, United Kingdom.
Information Extraction is an area of natural language processing that deals with finding factual information in free text.

This task uses machine learning techniques (ontology based learning, supervised learning and unsupervised learning) to match job ads with standard classifications.

Machine Learning → Ontology based learning, supervised learning and unsupervised learning, etc.
What does “Ontology-based Models” mean? How can we use ontologies to classify?
Occupations pipeline

Language Detector → Pre Processing → Ontology based models → Machine learning model → Classified items
Considerations on Occupation Classifier

- Ontology based learning + Supervised learning
 - Esco Ontology
 - New labels from Topic modelling
- One model for each language
- Data labelled by expert from each country
 - ~100k job ads (cleaned train set using our ontology)
 - 436 possible targets
- Evaluating set 20% of gold dataset job ads
 - Weighted Precision ~86%
 - ~430 detected professions
Text Similarity Approaches

String-based
String similarity measures operate on string sequences and character composition.

Jaro-Winkler, Jaccard, Cosine similarity

Corpus-based
Corpus-Based similarity is a semantic similarity measure that determines the similarity between words according to information gained from large corpora.

Latent Semantic Analysis, Explicit Semantic Analysis, DIStributionally similar words using CO-occurrences

Knowledge-based
Knowledge-Based Similarity is based on identifying the degree of similarity between words using information derived from semantic networks
Recap & Keywords

- Focus on summarization
 - How summarize data and improve our data analysts results?
- Link to standard taxonomies
 - Compare OJVs data with other sources
- Gold-set challenges (cardinality, quality and diversity)
- Mixed approaches
 - Machine learning
 - Ontology based learning
 - Text similarity and Information extraction techniques
- Model Life-Cycle
Questions?